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Pezrome

B cmamusma ce uzeesicoa kpumepuii Koea eOHA KpAUHOMEPHA KOMYMAMUGHA NOJYRPOCMA
aneebpa Hao aneebpuuno zameopeno noie F e uzomopgna kamo F -ancebpa na epynosa ancebpa
FG na xpatina abenesa epyna G. Taxa nue dasame wacmuuno pewenue na Ilpoobnem 1 na Brauer.
Hzcneosa ce cmpykmypama Ha KpaniHoMepHume KOMYmMamueHu noiynpocmu aneebpu nao nosemo R
Ha peannume yucia. Oceen moea ce u3BeH0a HeoOXO0UMO U O0OCMAMBUYHO YCI08Ue eOHA
Kpatinomepna xomymamusHa aneeopa nao noizemo R 0a e uzomopgua xamo R -ancebpa na msxos
peanta epynosa aneebpa.

Knwouoeu Odymu:. xpatinomepna KomMymamuena aneedpa, epynosa ancebpa; uzomop@usvm Ha ancedpu,
peanina mouwjHocm Ha aﬂze6pa

1. Introduction

In the present paper we examine the structure eofittite-dimensional commutative
semisimple algebras over an algebraically closettl fand over the fieldR. We give a
criterion for a finite-dimensional commutative semiple algebra over an algebraically
closed fieldF to be isomorphic as aR -algebra to a group algebieG of a finite abelian
group G. Thus, we give a partial solution to Brauer's Rrobl (Brauer 1963). We consider
the structure of real finite-dimensional commutatsemisimple algebras and we describe it
up to isomorphism. We define the concept real caldy of a commutative semisimple
algebra overR and we give a necessary and sufficient conditmmsiuch algebra to be
isomorphic as arR -algebra to a group algebRG of a finite abelian groufs . Moreover,
we find a necessary and sufficient condition folirste-dimensional commutative algebra
over R to be isomorphic as aR -algebra to some real group algebra.

If G is a finite multiplicative abelian group then wembteG[Z] :{g DG‘ g° :1} in
the whole paper.

2. Structure of a finite-dimensional commutative smisimple algebras over an
algebraically closed field

In the theory of group algebras the following fadtich is a partial case of the result
of (May 1971) is well known:

If G and G are torsion abelian groups and F is an algebraically closed field of
characteristic 0, then the group algebras FG and FG are isomorphic as F -algebras if and



only if |G| =‘5‘.
We prove the following result:

Proposition. Let F be an algebraically closed field and A be a commutative
semisimple algebra over F with dim- A=n (nON). Then A is isomorphic as an F -
algebra to the group algebra FG of the abelian group G of order n.

Proof. For the finite-dimensional commutative semisimplealgebraA we apply the
structural theorem of Wedderburn (Gluhov, Elizardechaev 2003, Pierce 1986, Lam 2001)
and we get

AOM, (F)OM, (F)O..OM,(F),

wheren? +n; +...+n =n. SinceA is a commutative algebra, thé, (F) is a commutative

algebra for each=12,...,s. Thereforen, = Ior i =12,...,s, which leads to

ACLFOFO..OF,
where the number of the direct addendas is
On the other hand, according to (Passman 20113, i an abelian group of order,
then
FGLFOFO..OF,
where the number of direct addends is equal tootder of the groupG . Therefore A is
isomorphic to the group algebRG as anF -algebra.

Using this proposition in the case whénis the fieldC of the complex numbers we
give a partial solution to the following Brauer'soBlem 1 (Brauer 1963): what are the
possible complex group algebras of finite groups?

3. Structure of real finite-dimensional commutativesemisimple algebras

There are a number of researches of the infiniteedsional commutative semisimple
algebras over the fiel®R of the real numbers. Important results for reaugr algebras are
obtained by Berman (Berman 1967) who finds a fyditem of invariants of a group algebra
of infinitely countable torsion abelian group otbke field R . Berman and Bogdan (Berman,
Bogdan 1977) generalise this result for arbitranfinite abelian groups. The normed
multiplicative group of a real group algebra of @elian p -group is described by Mollov
(Mollov 1984).

In this section we will examine the structure oé tnite-dimensional commutative
semisimple algebras over the field of the real neirsb

Theorem 1.Let A be a real finite-dimensional commutative semisimple algebra.
Then
ACRO..O0ROCO..OC. 1)
Proof. Let dim; A=n (nON). According to the structural theorem of Weddenbur
(Gluhov, Elizarov, Nechaev 2003, Pierce 1986, L&01) applied to the semisimple algebra
A we get

AOM, (D,)OM, (D,)T..0M, (D). )

whereandimR D, =n and D, are algebras with a division ov& for i =12,...,s. Since
i=1
A is a commutative algebra theMn(Di) are commutative algebras. Therefare= fot



eachi =12,...,s and by the theorem of Frobenius (Pontryagin 18&fitryagin 1987) it can
be deduced thad, =R or D, =C fori =12,...,s, i.e. (1) holds.

Definition. Let A be a real finite-dimensional commutative semisanglgebra and
dimg A=n (nON). We call the number, of the direct addendR in the decomposition
(1) areal cardinality of A.

Theorem 2.1f A is a real finite-dimensional commutative semisimple algebra and
dim; A=n (nON), then the real finite-dimensional commutative semisimple algebra B is

isomorphicto A asan R -algebraif and onlyif dim;B=nand r, =r;.
Proof. The necessity is obvious and the sufficiency veiby the fact that the power
of the algebraA and the number of direct addendsin (1) determineA up to isomorphism.

Theorem 3.Let A be areal finite-dimensional commutative semisimple algebra and
G beafinite abelian group. Then the algebra A isisomorphic asan R -algebra to the group

algebra RG if and only if dim, A=|G| and thereal cardinality r, of A isequal to [G[2].
Proof. Necessity. LetA be isomorphic aR -algebra to the group algebRG . Then
dim; A=dim; RG =|G|. We shall prove that the real cardinality of A (i.e. the real

cardinality r., of RG) is equal to|G[2]|. The group algebr&kG by the condition of the
theorem is semisimple. TheRG DZRGeX, wheree, are different minimum idempotents

of RG, which correspond to the charactegysof the groupG. The real cardinality,; of
RG is equal to the number of those charactgrsG — R™ for which gy =+ 1 for each
gUG. Let G :(gl>><...><(gs>><H Is the decomposition o6 in direct product of primary
groups wherg(g,) are cyclic 2-groupsi(=1...,s) and 2 does not dividg|, i.e. |G[2]| =25,
For the direct factoH there is a single charactgg with the mentioned properties, namely
hx, =1 for eachhOH . For each of the direct factm(sgi> there are two different such
charactersy,, and y,,, namely g x, = land g x, =—1 Therefore, the number of all
characters y of G with the property gy =+ 1for each gG is 252|G[2]|. Thus
e =|G[2]|, and from the isomorphism we ggt=|G[2]|. Since the cas& =H is trivial,

then the proof of the necessity is complete.
Sufficiency. Letdim; A=|G| and the real cardinality, of A is equal to|G[2]|. In

order to prove thatA is isomorphic asR -algebra to the group algebRRG it is enough,
according to Theorem 1, to prove thdim, A=dim; RG and that the real cardinalities of

the two algebras are equal, i.e, =ry;. The first conditiondim; A=dim; RG can be
obtained fromdim; RG =|G|. The second condition holds, since in the necessit proved
that r =|G[2] .

Note. Let G and G be finite abelian groups. We can give by usingdbedition of
Theorem 3 the following necessary and sufficiemtditoon for an isomorphism of the group

algebrasRG andRG:



The real group algebras RG and RG of the finite abelian groups G and G are
isomorphic as R -algebrasif and only if |G| =‘§‘ and [G[2] =‘5[2]‘.

The last result is a partial case of the resuB@&fman and Bogdan (Berman, Bogdan
1977).

Theorem 4. Let A be a real finiteedimensional commutative algebra. Then A is
isomorphic as an R -algebra to some real group algebra if and only if the following
conditions are met:

(i) A issemisimple algebra;

(i) r, =2', where t isnon-negative integer;

(iii) r, divides dimy A.

Proof. Necessity. LetA be isomorphic as aR -algebra to the group algebRG for
some groupG . Since A is a finite-dimensional and commutative algebnantG is a finite
abelian group. The algeb®G by the theorem of Maschke (Pierce 1986, van deerdém
1990, Lang 2002) is semisimple which implies tiats semisimple, i.e. (i) is fulfilled.

By Theorem 3, the equalits, = |G[2]| is fulfilled. Consequently, = 2' for some non-
negative integet. In this way (ii) is proved.

Since [G[2]| divides |G| where |G| =dim, A and r, =|G[2]| holds, thenr, divides
dimy A, i.e. (iii) is fulfilled. The necessity is proved.

Sufficiency. Let the conditions (i), (ii) and (iijold. The condition (i) and Theorem 1
imply that the decomposition (1) holds, i.e.

ACRO...OROCO..OC,
where, by (i), the real cardinality oA is r, =2'. We denoten=dim, A. Let G be an
arbitrary abelian group of order whose 2-component is decomposed in direct prooiuctt
cyclic groups. The existence of such group when is given by conditions (ii) and (iii).
When t= 0 we getn=1+2c, where c, is the number of the direct adden@s in the
decomposition (1) ofA. As n is an odd integer, then each abelian gr@ipof order n

satisfies the condition for the 2-component. Whenapply Theorem 3 t&\ and RG we get
that AL RG asR -algebras. The proof of the sufficiency is compdete
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