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Резюме  
В статията се извежда критерий кога една крайномерна комутативна полупроста 

алгебра над алгебрично затворено поле F  е изоморфна като F -алгебра на групова алгебра 
FG  на крайна абелева група G . Така ние даваме частично решение на Проблем 1 на Brauer. 
Изследва се структурата на крайномерните комутативни полупрости алгебри над полето R  
на реалните числа. Освен това се извежда необходимо и достатъчно условие една 
крайномерна комутативна алгебра над полето R  да е изоморфна като R -алгебра на някоя 
реална групова алгебра.  

Ключови думи: крайномерна комутативна алгебра; групова алгебра; изоморфизъм на алгебри; 
реална мощност на алгебра  

 
 

1. Introduction  
 

In the present paper we examine the structure of the finite-dimensional commutative 
semisimple algebras over an algebraically closed field and over the field R . We give a 
criterion for a finite-dimensional commutative semisimple algebra over an algebraically 
closed field F  to be isomorphic as an F -algebra to a group algebra FG  of a finite abelian 
group G . Thus, we give a partial solution to Brauer's Problem 1 (Brauer 1963). We consider 
the structure of real finite-dimensional commutative semisimple algebras and we describe it 
up to isomorphism. We define the concept real cardinality of a commutative semisimple 
algebra over R  and we give a necessary and sufficient condition for such algebra to be 
isomorphic as an R -algebra to a group algebra GR  of a finite abelian group G . Moreover, 
we find a necessary and sufficient condition for a finite-dimensional commutative algebra 
over R  to be isomorphic as an R -algebra to some real group algebra.  

If G  is a finite multiplicative abelian group then we denote [ ] { }12 2 =∈= gGgG  in 

the whole paper.  
 

2. Structure of a finite-dimensional commutative semisimple algebras over an 
algebraically closed field  

 
In the theory of group algebras the following fact which is a partial case of the result 

of (May 1971) is well known:  

If G  and G  are torsion abelian groups and F  is an algebraically closed field of 

characteristic 0, then the group algebras FG  and GF  are isomorphic as F -algebras if and 



only if GG = .  

We prove the following result:  
 
Proposition. Let F  be an algebraically closed field and A  be a commutative 

semisimple algebra over F  with nAF =dim  ( Nn ∈ ). Then A  is isomorphic as an F -
algebra to the group algebra FG  of the abelian group G  of order n .  

Proof. For the finite-dimensional commutative semisimple F -algebra A  we apply the 
structural theorem of Wedderburn (Gluhov, Elizarov, Nechaev 2003, Pierce 1986, Lam 2001) 
and we get  

( ) ( ) ( )FMFMFMA
snnn ⊕⊕⊕≅ ...

21
,  

where nnnn s =+++ 22
2

2
1 ... . Since A  is a commutative algebra, then ( )FM

in  is a commutative 

algebra for each si ,...,2,1= . Therefore 1=in  for si ,...,2,1= , which leads to 

FFFA ⊕⊕⊕≅ ... ,  
where the number of the direct addends is n .  

On the other hand, according to (Passman 2011), if G  is an abelian group of order n , 
then  

FFFFG ⊕⊕⊕≅ ... ,  
where the number of direct addends is equal to the order of the group G . Therefore A  is 
isomorphic to the group algebra FG  as an F -algebra.  

 
Using this proposition in the case when F  is the field C  of the complex numbers we 

give a partial solution to the following Brauer's Problem 1 (Brauer 1963): what are the 
possible complex group algebras of finite groups?  
 

3. Structure of real finite-dimensional commutative semisimple algebras  
 

There are a number of researches of the infinite-dimensional commutative semisimple 
algebras over the field R  of the real numbers. Important results for real group algebras are 
obtained by Berman (Berman 1967) who finds a full system of invariants of a group algebra 
of infinitely countable torsion abelian group over the field R . Berman and Bogdan (Berman, 
Bogdan 1977) generalise this result for arbitrary infinite abelian groups. The normed 
multiplicative group of a real group algebra of an abelian p -group is described by Mollov 
(Mollov 1984).  

In this section we will examine the structure of the finite-dimensional commutative 
semisimple algebras over the field of the real numbers.  

 
Theorem 1. Let A  be a real finite-dimensional commutative semisimple algebra. 

Then  

Proof. Let nA =Rdim  ( Nn ∈ ). According to the structural theorem of Wedderburn 
(Gluhov, Elizarov, Nechaev 2003, Pierce 1986, Lam 2001) applied to the semisimple algebra 
A  we get  

where ∑
=

=
s

i
ii nDn

1

2 dimR  and iD  are algebras with a division over R  for si ,...,2,1= . Since 

A  is a commutative algebra then ( )in DM
i

 are commutative algebras. Therefore 1=in  for 

C...CR...R ⊕⊕⊕⊕⊕≅A . (1)  

( ) ( ) ( )snnn DMDMDMA
s

⊕⊕⊕≅ ...21 21
,  (2)  



each si ,...,2,1=  and by the theorem of Frobenius (Pontryagin 1986, Pontryagin 1987) it can 

be deduced that R=iD  or C=iD  for si ,...,2,1= , i.e. (1) holds.  

 
Definition. Let A  be a real finite-dimensional commutative semisimple algebra and 

nA =Rdim  ( Nn ∈ ). We call the number Ar  of the direct addends R  in the decomposition 
(1) a real cardinality of A .  

 
Theorem 2. If A  is a real finite-dimensional commutative semisimple algebra and 

nA =Rdim  ( Nn ∈ ), then the real finite-dimensional commutative semisimple algebra B  is 

isomorphic to A  as an R -algebra if and only if nB =Rdim  and BA rr = .  
Proof. The necessity is obvious and the sufficiency is given by the fact that the power 

of the algebra A  and the number of direct addends R  in (1) determine A  up to isomorphism.  
 
Theorem 3. Let A  be a real finite-dimensional commutative semisimple algebra and 

G  be a finite abelian group. Then the algebra A  is isomorphic as an R -algebra to the group 
algebra GR  if and only if GA =Rdim  and the real cardinality Ar  of A  is equal to [ ]2G .  

Proof. Necessity. Let A  be isomorphic as R -algebra to the group algebra GR . Then 
GGA == RRR dimdim . We shall prove that the real cardinality Ar  of A  (i.e. the real 

cardinality GrR  of GR ) is equal to [ ]2G . The group algebra GR  by the condition of the 

theorem is semisimple. Then ∑
•

≅ χGeG RR , where χe  are different minimum idempotents 

of GR , which correspond to the characters χ  of the group G . The real cardinality GrR  of 

GR  is equal to the number of those characters *: R→Gχ  for which 1±=χg  for each 

Gg ∈ . Let HggG s ×××= ...1  is the decomposition of G  in direct product of primary 

groups where ig  are cyclic 2-groups ( si ,...,1= ) and 2 does not divide H , i.e. [ ] sG 22 = . 

For the direct factor H  there is a single character 0χ  with the mentioned properties, namely 

10 =χh  for each Hh ∈ . For each of the direct factors ig  there are two different such 

characters 0iχ  and 1iχ , namely 10 =iig χ  and 11 −=iig χ . Therefore, the number of all 

characters χ  of G  with the property 1±=χg  for each Gg ∈  is [ ]22 Gs = . Thus 

[ ]2Gr G =R , and from the isomorphism we get [ ]2GrA = . Since the case HG =  is trivial, 

then the proof of the necessity is complete.  
Sufficiency. Let GA =Rdim  and the real cardinality Ar  of A  is equal to [ ]2G . In 

order to prove that A  is isomorphic as R -algebra to the group algebra GR  it is enough, 
according to Theorem 1, to prove that GA RRR dimdim =  and that the real cardinalities of 

the two algebras are equal, i.e. GA rr R= . The first condition GA RRR dimdim =  can be 

obtained from GG =RRdim . The second condition holds, since in the necessity we proved 

that [ ]2Gr G =R .  

 

Note. Let G  and G  be finite abelian groups. We can give by using the condition of 
Theorem 3 the following necessary and sufficient condition for an isomorphism of the group 

algebras GR  and GR :  



The real group algebras GR  and GR  of the finite abelian groups G  and G  are 

isomorphic as R -algebras if and only if GG =  and [ ] [ ]22 GG = .  

The last result is a partial case of the result of Berman and Bogdan (Berman, Bogdan 
1977).  

 
Theorem 4. Let A  be a real finite-dimensional commutative algebra. Then A  is 

isomorphic as an R -algebra to some real group algebra if and only if the following 
conditions are met:  

(i) A  is semisimple algebra;  
(ii)  t

Ar 2= , where t  is non-negative integer;  

(iii)  Ar  divides ARdim .  
Proof. Necessity. Let A  be isomorphic as an R -algebra to the group algebra GR  for 

some group G . Since A  is a finite-dimensional and commutative algebra, then G  is a finite 
abelian group. The algebra GR  by the theorem of Maschke (Pierce 1986, van der Waerden 
1990, Lang 2002) is semisimple which implies that A  is semisimple, i.e. (i) is fulfilled.  

By Theorem 3, the equality [ ]2GrA =  is fulfilled. Consequently t
Ar 2= for some non-

negative integer t . In this way (ii) is proved.  
Since [ ]2G  divides G  where AG Rdim=  and [ ]2GrA =  holds, then Ar  divides 

ARdim , i.e. (iii) is fulfilled. The necessity is proved.  
Sufficiency. Let the conditions (i), (ii) and (iii) hold. The condition (i) and Theorem 1 

imply that the decomposition (1) holds, i.e.  
CCRR ⊕⊕⊕⊕⊕≅ ......A ,  

where, by (ii), the real cardinality of A  is t
Ar 2= . We denote An Rdim= . Let G  be an 

arbitrary abelian group of order n  whose 2-component is decomposed in direct product of t  
cyclic groups. The existence of such group when 1≥t  is given by conditions (ii) and (iii). 
When 0=t  we get Acn 21+=  where Ac  is the number of the direct addends C  in the 
decomposition (1) of A . As n  is an odd integer, then each abelian group G  of order n  
satisfies the condition for the 2-component. When we apply Theorem 3 to A  and GR  we get 
that GA R≅  as R -algebras. The proof of the sufficiency is completed.  
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